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Abstract WeinVestigatemnditions under which theclassical q-deformation ofsu(3) isgenerated 
by the expectation values of the elements of suq(3), in qcoherent states. We also discuss the 
IioIstejr-MmakoE-lp realization ofthe suq(3) quanlum group in k m  ofq-bosons. 

1. Introduction 

Quantum algebras have been attracting much attention in physics. These interesting 
mathematical structures are generalizations of Lie algebras in which a quantum Yang-Baxter 
equation replaces, in the associative condition, the usual Jacobi identity. They play a relevant 
roleinagreatvarietyofareasrangingfromthetheoryof integrablesystemsinstatisticalphysics 
and field theory to solvable models of molecular and nuclear structure. In the literature, one 
finds many examples of useful soluble models based on algebraic symmetries. A classic 
example is the Lipkin model [1], with the 4 2 )  symmetry. Extended Lipkin-type models 
based on the su(3) symmehy, have also been considered by several authors {Z]. The su(3)- 
type models may be described as threelevel models associated with the irrep which is fixed 
by the condition that, in the highest-weight state, all the particles fill up one of the levels. 
Very often, these models possess a q-deformed counterpart which is interesting to study. In 
particular, thequantum algebrasu,(Z) has been used with success in thedescription ofground- 
state bands of some deformed nuclei [3]. Recently, the q-analogue of the Holstein-F’rimakoff 
boson realization of su(2) has been obtained by Quesne [4]. A Schwinger-type realization 
of the su,(3) algebra in terms of q-boson operators has been given by the same author [5]. 
Holstein-F’rimakoff boson realizations of s u ( N )  play a relevant role in connection with the 
theory of collective states of many-body systems [6]. 

In this paper we discuss the Holstein-Primakoff-type realization of the su,(3) quantum 
group in terms of q-bosons, both at the quantal and at the classical level. The present result 
extends, therefore, a result of [4] for sup (2). However, we do not follow, in ow discussion, the 
elegant method of [4] but, instead, we base it on a dynamical formulation in the framework of 
a mean-field description. The realization of quantum groups in qdeformed oscillator systems, 
at classical and quantum levels, has been already discussed in detail by Chang et al. These 
authors arrive at q-deformed quantal systems after canonical quantization of the corresponding 
q-deformed classical system [7]. Our approach is complementary to theirs, in the sense that in 
OUT case the q-deformed classical system arises in connection with the mean-field description 
of the corresponding q-deformed quantal system [8]. We investigate conditions under which 
the classical q-deformation of su(3) is generated by the expectation values of the elements of 
su,(3), in q-coherent states. 
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2. Mean-field approach 

Following [51, we denote the generators of suq(3) by Ei j ,  Eii - E,), i # j .  i ,  j 5 [ 1,2,3). 
Let IQ) be such that Eala) = Ez11CJ) = E131@) = E311CJ) = 0, (Eu - EI1)IO) = 
( E n  - E33) I CJ) = 2 j I CJ) . In the state 149, regarded as a many-fermion state, the levels 1 and 
3 are empty and the level 2 contains 2 j  fermions. The generators Eii - El, are Hermitian 

t i and ED = E32r EZI = Elz.  On the other hand, El3 = El&= - eYEz.Ej2 is not the adjoint 
operator of E31 = E32E21 - e-YEZ1E32. Fordetails, see [51. 

Consider the Fock space spanned by the kets Imn) = E&Efzl@). The norm of Imn) is 

[Zjl![ml![n]! 
[Zj - m - n]! 

(mnlmn) = 

where [ X I  = shyx/shy. The q-deformed coherent state may he written 

Thenormofthestate I@) = I @ ( z I , z z ) )  is 

k e  may use the q-deformed coherent state I@) to describe the dynamics governed by 
Hamiltonians such as 

H = E33 - E22 + &?(E:, + E;] + E:, + Ei3 + E:, + E::). 

This is a q-deformed version of the system considered in [2]. 
It is convenient to introduce the operators fi, and fiz defined by 

f i t lm, n) = m1m.n) fizlm, n )  = nlm, n )  . 
In order to write down the quantal action principle we need the following quantity: 

where I$) denotes the time derivative of I+), and 

In the sequel, the coherent state expectation value of the operator X will he denoted 
(XI = (@lXI*)/(*l*). we also have 



Classical q-deformation of su(3) 5847 

where 

Finally, we may write 

3. Holsteii-Pri~nakoff realization of su,(3) 

The variables ZI. ZZ, z;. z;i obey complicated Poisson bracket (PB) relations. We define new 
q-oscillator classical variables by 

PI = ZIJ-) bz = 22 

In terms of the classical q-oscillators we may write 

We also have 
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The derivation of (H) requires the computation of (E;), i # j. These quantities are also easily 
obtained. For instance, 

However, we will focus on (E;,). 
Although (NI) and (Nz) are functions of p;B1 and p;&, it may be found numerically that, 

to an excellent approximation, (NI) does not depend on &+Bz and (Nz) does not depend on 
pTj31. Therefore, the PB relations of the variables p;, p k  may be written [SI 

d[NkI 
{pks @TI = -&- WX', P/l = 0 d N k  I&, pi1 = 0 

(Nx, S;i = -i&S; 
where Nk = (fik), [Nk] = pkp;. This suggests the following realization of su,(3) in terms, 
of q-deformed classical oscilators: 

(Nx, p;t = i W i  

E32 = p;,I'PJ -NI - NzI 
E,,  =p;J[zj -NI -N21 

E= = E &  
E21 = '57, 
Ezz -E33 = 2 j  -2N1 -NI 
E31 = B;j32e 

E= -E11 = 2 j  - N I  - 2 N 2  

y(zj-N> 4 2 - 1 )  zI3 = p;ple""""-Y(zj-N,-N~-I) 

IEz3.t.3~1 = -i-[& -E331 

Vu. (E~2-&3)1=  2iEs I&, (Ezz-EII)~  = IEIz. E321 = 0 

1.~12, E=]  = - ~ E ~ ~ ~ Y ( I ~ - N I - N z - ~ ) [ z ~  - N~ - NJ, . . . 

Typical PB relations satisfied by the generators &ij are as follows: 
Y Y l E 1 3 , E d  = - i - h  -E331 

shy shy 

where [XI' = ychyx/shy. Notice the factor y/shy in the first relations. 

b! , bi satisfying the q-oscilator algebra 

The quantal version of the q-deformed oscilators j3;, pi are q-deformed boson operators 

b!bi = [Nil 

[N;, b j ]  = bt&j 

bib! = [Ni + 11 [b!, bj] = 0, i # j 

[Ni, bj] = -bi&j. 
This suggests the following boson realization of su,(3): 

E& = bfJ[2j -NI  - Nz] E& = E,, E, ,  B - b t  - , J[Zj - N I  - Nz] 

E; = E, ,  s i  E.&- E / ,  = 2 j -  NI -2Nz E & -  E:: = 2 j  -2Nl-  N2 

B - - bte-y(2j-NI-Nz-l)bl 2 E: = bfeY(Zj-NI-N?-l)b 2. 

Typical commutation relations satisfied by the generators E; are as follows: 

[E;, E&] = [E& - E&] 
[E; ,  ( E &  - E.&)] = -2EB 
E&E& - E ~ E ;  = o 

[ E L 3  E41 = [ E ~ I  - E&] 
[E;, (E.& - E ; ) ]  = -E& 
E c E &  - eYE&EL = E L , .  . . . 

Thefinalresultmayberegardedasanextension, foraparticularirrepofsuq(3),oftheandogue 
of the Holstein-F"akoff realization of su,(2) obtained in [SI. 
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